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Numerical Prediction of Acoustic Sounds Occurring by the Flow 
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Acoustic  sounds generated by unitbrm flow around a two-d imens iona l  circular  cylinder at 

R e = 1 5 0  are simulated by applying the finite difference lattice Boltzmann method. A thi rd-  

order -accura te  up-wind  scheme is used tbr the spartial derivatives. A second-order -accura te  

Runge -Ku t t a  scheme is also used for time marching. Very small acoustic pressure fluctuation, 

with same frequency as that of  Karman vortex street, is compared with pressure fluctuation 

around a circular  cylinder. The  propagat ion velocity of  acoustic sound shows that acoustic 

approaching the upstream, due to the Doppler  effect in uniform flow, slowly propagates. For  the 

downstream, on the other hand, it quickly propagates. It is also apparent  that the size of  sound 

pressure is propor t iona l  to the central distance r -1/2 o f  the circular cylinder. 

Key W o r d s : C o m p u t a t i o n a l  Fluid Dynamics,  Lattice Boltzmann Method,  Compressible  Fluid, 

Acoust ic  Sound 

N o m e n c l a t u r e  
a i Sound velocity 

c : Particle velocity 

e : Internal energy 

f i (x ,  l): Particle distr ibution function of  fluid at 

lattice node x and time step ¢ 

t : T ime  

u,, ~ Fluid velocity 

G r e e k  symbols 

7 ~ Coefficient of  specific heats 

,u : Viscosity 
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r : T ime increment 

p : Density 

q~ : Relaxat ion parameter 

,.(2 ~ Coll is ion opera tor  

1. Introduct ion  

With increased speed of  transport vehicles like 

airplane, automobiles,  and trains in recent years, 

noise has become a large environmental  problem. 

There are two kinds of  noise ;  vibration noise 

caused by the object, and fluid noise produced 

from the unsteady motion of  fluid. The energy 

of  sound due to object vibrat ion is propor t ional  

to O(10 -2 ) of  the representative velocity while 

the fluid noise is propor t ional  to O(10 - s -  10-8). 

Therefore,  it is difficult to understand fluid noise 

by analyzing its mechanism. 

In the numerical  research o f  fluid sound, it can 
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be possible to analyze the information of the 

detailed flow field, which is not obtained in the 

experiment, by directly solving the compressible 

Navier-Stokes equation. However, in studying 

the fluid sound by a numerical method, a number 

of things are necessary ; a high accuracy scheme to 

realize the sound pressure (O(10 -4)) against the 

static pressure, a wide calculation area to obtain 

far away sound pressure field, and removal of 

numerical reflection at the boundary. 

The flow around a cylinder has been studied 

both experimentally and numerically for quite a 

while (Williamson, 1996; Persillon and Braze, 

1998 : Inoue, 2001) because it is one of the abun- 

dant phenomena of the fundamental fluid mec- 

hanics. Yet in spite of its simplicity, a lot of 

unsolved problems still exist. One of them is the 

generation mechanism of acoustic sound by flow 

around the cylinder. This has also been studied 

experimentally and numerically to some extent 

(Hardin and Lamkin, 1984). The numerical 

analyses have been done in the conventional way 

that a vorticity dominant near field is simulated 

first and then an acoustic far field is obtained 

using the approximated equations derived from 

the acoustic analogy (Curie, 1955). 

In this paper, the far-field acoustic sounds gen- 

erated from the turbulent wake of a circular 

cylinder at low Reynolds number is computed 

using the finite difference lattice Boltzmann me- 

thod. The predicted sound spectra is compared 

with that of the other numerical simulation. 

2. Theoret ical  Method 

In the last two decades, the lattice gas method 

(LGM or lattice gas cellular automaton LGCA) 

(Frisch et al., 1987; Chopard and Dorz, 1998) 

and the lattice Boltzmann method (LBM) have 

become powerful tools in computational fluid 

dynamics (CFD).  In both methods, the artificial 

particles move along the lattice line and collide 

with each other. Some books and reviews pre- 

sented a lot of studies in this field (Alexander 

et al., 1993; Chen and Doolen, 1998; Wolf- 

Gladrow. 2000: Tsutahara and Kang, 2002). 

The finite difference lattice Boltzmann method 

(FDLBM) developed from LBM is also one of 

the computational fluid mechanics methods. Cao 

et al. (1997) proposed this method by separating 

the lattice form in dispersion of space and the 

physical form of particle movement. It became 

possible and easy to simulate for the complicated 

object forms, and the application to various flow 

fields was attained. This method has high flexi- 

bility for coordinate system selection and is often 

the choice among various different schemes. 

2.1 Thermal  lattice BGK model 

The lattice Bhatnager-Gross-Krook equation 

(BGK, 1954), a simplified version of the collision 

term in the lattice Boltzmann Eq. (I),  is written 

a s  

fi(x+c~r, t + r ) = f i ( x ,  t)+£2i (1) 

Here, the real number f i  (x, t) is the mass of fluid 

at each lattice node x and time step t, moving in 

direction i. 

The discrete lattice BGK equation, a simplified 

version of the discrete lattice Boltzmann equation, 

is used. 

8f~ (x, t) 8f, (x, t) 
~-ci~ -.(2,. (2) 

8t 8x~ 

The microscopic dynamics associated with Eq. 

(2) can be viewed as a two step process of 

movement and collision. In the collision step, the 

distribution functions at each site relax toward a 

state of local equilibrium. For simplicity, the 

linear, single time relaxation model of BGK that 

has been widely applied to LBM is used as 

follows. 

1 _ f i ( 0 )  ~ i = - ~  [fi(x, t) (x, t)] (3) 

The collision operator Z"2i conserves local mass, 

momentum, and kinetic energy while the relaxa- 

tion parameter ~b controls the rate at which 

the system relaxes to the local equilibrium of 

f~°) (x, t). 
The local equilibrium distribution function in 

Eq. (2) is expressed as according to Kang et al. 

(2002). 
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Fig. 1 

X 

Two-dimensional space and particle distri- 
bution in FDLBM 

f}°)=Fip[ 1-2Bci~u~ + 2BZ( c~,u~) 

+Bu2 43 Ba(ciaua)a 2BZcia,,~uz I (4) 

The moving particles are allowed to move with 

five kinds of speed c, 2c, 3c, v/2c and 2 , / 3 c .  

Figure 1 shows  a two-dimensional  space lattice. 

2.2 F in i te  d i f f e r e n c e  l a t t i c e  b o i t z m a n n  

method  

The models for compressible fluids are some- 

times unstable in calculation because the distri- 

bution function gives a negative value. Using the 

finite difference considerably stabilizes the calcu- 

lation (Cao et al., 1997 ; Seta et al., 1998). 

For  this purpose, this paper employs the dis- 

cretized BGK Eq. (2). This equation is shown to 

lead the Navier-Stokes equations by the Chap- 

man-Enskog expansion, and the term (~b--1/2) 

in transfer coefficient changes into ~b. The rela- 

tionship between the kinematic viscosity and the 

relaxation time factor becomes 

2 / 2 = ~  peq6 (5) 

For high Reynolds number flows which are very 

important in engineering fields, /2(<1 must be 

satisfied. If Euler's first order forward difl'crence 

scheme is used for time integral, the equation is 

transformed a s  

fi(x + c~r, t + r )  

=f , (x , t )+At[-c ,~  U'(x ' t )  l f~°)(x,t)l(6) 
8x~ 

where A t  is the time increment. From the condi- 

tion of stability in Eq. (6), the following condi- 

tion must be satisfied. 

A t  < 2.0 (7) 

This states that the distribution function ap- 

proaches its equilibrium state by every collision. 

Relations Eq. (5) and (7) lead that for high 

Reynolds number flows, the time increment cho- 

sen must be very small and the calculation time 

will be very long. 
Therefore, an equation in which the third term 

is added to the discretized BGK equation (Eq. 

(2)) is introduced (Kang et al., 2002); 

Of, Ix, t) Of,(x. t) Aci~ a [f,(x. t)-/~°~(x, t)l 
at - + c ~  8x~ ~ ax~ (8) 

=-~[f,(x. t)-f[°'(x, t)! 

where A (>0)  is a constant. Then the relationsh- 

ip changes to 

2 / 2 = ~  p e ( ~ - A )  (9) 

and if an appropriate value of A is chosen, there 

will be a large enough ~b for flows of small 

viscosity, time increment can also be made large 

enough. 

3. Numerical  Procedure 

A schematic diagram of the flow around a 

two-dimensional  circular cylinder is presented in 

Fig. 2. In the Cartesian coordinate (x, y) ,  the 

uniform flow of the velocity (fro parallel to the x 

direction is considered. Normalized by the static 

sound velocity a0, the streamwise velocity is 

prescribed by the Mach number M. 

M =  U o _  Uo (10) 
a0 ~ 2 e  

Furthermore, the cylinder of  the diameter d is 

fixed at the origin. The polar coordinates ( r ,  8) 

are also used, where the azimuthal angle 0 is 

defined from upstream in the clockwise direction. 

The Reynolds number is defined as R e =  Uod//2 
where /2 is the kinematic viscosity. Flow quanti- 

ties are non-dimensionalized by d, a0, and po, 

where P0 is the ambient density. The physical 

parameter prescribed is the ratio of specific heats 

r = (D + 2 ) /D .  
A third-order-accurate  up wind scheme (sec- 

ond-order-accurate  at the boundary) is used for 
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Fig. 2 
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Schematic diagram of the tlow model 

spatial derivatives, and a second-order -accura te  

Runge Kutta scheme is used lbr time integration. 

Adiabat ic  and no-s l ip  condi t ions  are adopted on 

the cylinder surface. Non-ref lec t ing  boundary Fig. 3 

condit ions (Pointsot and Lele, 1992) are adopted 

on the outer boundary so that the numerical  wave 

reflections from the boundary  are removed. Initial 

flows are given as potential flows except for the 

boundary  layer on the cylinder wall. 

The non-un i fo rm O-gr id  systems are applied to 

simulate the entire field from near to far acoustic 

fields. A typical grid system in the case o f  R e =  

150 is constructed as follows : the number  of  the 

grid points results in r x 0 ~ - - 2 0 1  (in the radial 

direction) × 121 (in the azimuthal direct ion):  the 

time A t  is 0.02 ; and the examined Mach numbers 

use the sound velocity by changing the internal Fig. 4 

energy e. All  the calculat ions are in two-d imen-  

sion and use 2D21V model.  
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Comparison of pressure coefficient Cp be- 

tween FDLBM and DNS at 0_<0_<x. R e =  

150, M=0 .2  

4. Results and Discussion 

Direct s imulat ion of  acoustic waves emitted 

from a circular cylinder in a uniform flow is 

performed using the proposed model  (Eq. (8)) ,  

in which the cylindrical  coordinated system is 

employed. 

The numerical  results when the Karman vortex 

street is fully developed are shown in Figs. 3 to 8 

in case of  R e = 1 5 0  and M----0.2. 

Figure 3 depicts the forces on the cylinder sur- 

face, which are regarded as main sound sources 

by theory (Curie, 1955). T ime  histories of  drag 

coefficient Co and lift coefficient CL are also 

represented in Fig. 3. They are defined as the ratio 

of  the forces to the kinematic energy at infinity, 

poU2/2=M2/2. The mean value of  the drag 

coefficient, Co, is about  1.01. Figure 4 presents 

the mean and fluctuating surface pressure as a 

function of  the azimuthal  angle 0 with that of  

DNS (lnoue,  1999). Pressure coefficient Cp is the 

time averaged pressure on the cylinder surface 

normalized by the value at the stagnation point  

0 = 0  °. A comparison of  the presstire coefficient at 

0-----0~7c indicates that F D L B M  is compat ible  

with DNS. 

The acoustic sounds in the far field are com- 

pared with the forces on the cylinder. Here, the 

sound pressure Ap is defined as 

A p - -  p -  Po _ P -  poeo ( 11 ) 
Po Poeo 

where P0 denotes the ambient pressure. T ime  his- 

tory A t  of  sound pressure at the point d = 5 0  

and 0 = 9 0  ° and - -90  ° is shown in Fig. 5. By 

compar ing  with the lift coefficient CL in Fig. 3, it 

can be seen that Ap  oscillates at the same fre- 

quency as the vortex shedding frequency. 
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Fig. 6 Contours of sound pressure by FDLBM at t =  

133. Re=150, M=0.2 .  The pressure contour 

level is 3.0x 10-4~Ap~3.0X 10 -4. Solid 

lines : positive, dotted : negative 

The Strouhal  number  is defined by St = f d / U  

where f is the frequency of  the periodic vortex 

shedding. It is evaluated at St=0.178 ,  which is 

very close to the experimental  result for R e = 1 5 0  

(Wil l iamson,  1996). 

Figure 6 shows the acoustic pressure field at 

t :  133, where the contour  level fluctuates APstep = 

3 x 1 0  -~. The solid lines indicate the positive 

pressures and the dashed lines are the negative 

ones. As can be seen from this figure, rarefaction 

"Fable 1 Numerical results of speed of sound at each 
direction (M=2.0)  

0 cos 0 I gzo=ao/Uo A r  A r / ~ o  

45.0 0.707 4.293 4.277 0.996 

90.0 0.0 ' 5.00 4.891 0.978 

135.0 I --0.7071 5.707 5.585 0.979 
t I 

q 
¢//#/A/&~ -~-  "~-i~."- ~'-".", ,1 ; /  t;' ~ ~',,:,, ,,,, ' ",,q ",, 

I ~ ~ :  ~ ". ' , ' , ,  ', t 
I IWf~ I ~  ,'1.,." " ' ~  ' ; " \  ' 

:j ,, ....,J 
~--_f-: ) i " t 
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Fig. 7 Contours of sound pressure by DNS. R e =  

150, M=0.2 .  The calculation domain was 

given at r x 0 = 8 7 1  x503 (Inoue, 2001) 

waves with negative Ap  and compression waves 

with positive Ap  are generated alternately around 

the cylinder at the origin, and propagate  down-  

stream and upstream, respectively. Behind the 

cylinder, vortices become weaker with increasing 

downstream distance, and the influence of  the 

far wake on the sound field appears only in the 

sound propagat ing toward downst ream around 

0 = 0 ° - - 1 8 0  ° . This result is consistent with the 

acoustic pressure field by DNS (lnoue,  2001), 

which is shown in Fig. 7, and compat ible  with 

that o f  FDLBM.  

Table  1 shows the difference between the theo- 

retical prediction and the calculated value of  the 

propagat ion speeds. At all directions, the pro- 

pagation speeds vary a e = a s  - U0 cos 0 by mean 

flow of  the medium. In this case, the estimated 

error  is within 2. I% and the results agree well 

with the theoretical  predictions. 

Figure 8 illustrates the distr ibutions and decays 

of  the sound pressure plotted along the various 

directions ( 0 = 4 5  °, 90 ° and 135°). The distribu- 

tion of  Ap  are plotted against the radial distance 
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Distributions and decays o1" sound pressure. R e =  150, M = 0 . 2  

r from the origin at the three different times 

¢=130,  131, and 132. Each peak of  the waves is 

found to propagate and decay. The propagat ion 

speed of  the waves is equal  to the speed of  sound 

in the far field, in agreement with the linear 

acoustic theory. Also, the decaying curves are 

converged to the lines propor t ional  to r -1/2 in the 

far field, which is again in accordance with the 

theory. These results suggest that the sounds 

generated from the cylinder at low Reynolds  

numbers are precisely captured by F D L B M  if 

both the flow dynamics in the near field and the 

wave propagat ions  in the far field are computed 

with high accuracy. 

5. C o n c l u d i n g  R e m a r k s  

The acoustic sounds generated from the flow 

around the circular  cylinder are successfully si- 

mulated using the F D L B M  of  the two-d imen-  

sional 21velocity model.  The sound frequency is 

the same as the vortex shedding frequency of  the 

Karman vortex street. The rarefaction waves and 

the compression waves are alternately generated 

and propagate  toward downst ream and upstream, 

respectively• The sound pressure also decays pro- 

por t ional  to r -1/2 in the far acoustic field, which 

agrees with the theoretical prediction. 
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